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Abstract. Swarm intelligence (SI), an artificial intelligence (AI) approach widely used in many 
complex optimization problems, models the collective behavior of social systems such as honeybees and 
birds. This study evaluated a collaborative swarm intelligence approach optimization algorithm, named 
the particle bee algorithm (PBA). The PBA is based on a particular aspect of bird (particle swarm 
optimization, PSO) and honeybee swarm (bee algorithm, BA) behaviors that integrates their 
advantages and proposes a self-parameter-updating technique to prevent being trapped into a local 
optimum in high dimensional problems. This study compares the performance of PBA with that of 
differential evolution (DE), evolutionary algorithms (EA), particle swarm optimization (PSO) and bee 
algorithm (BA) for multi-dimensional numeric problems. For test problems carried out in this work, 
colony sizes ranging from 75 to 100 of PBA can provide an acceptable convergence speed for an 
optimization search. Besides, elite and best bee PSO iteration sizes of (15, 9) to (30, 18) can provide an 
acceptable convergence speed for an optimization search. Results show PBA performance to be 
comparable to that of mentioned algorithms, and the potential for its being efficiently employed to solve 
benchmark numerical problems with high dimensionality. 
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1. INTRODUCTION 

Evolutionary algorithms (EAs), generally known as general-purpose 

optimization algorithms, are often used to find, within a reasonable 

compilation time, near-optimal solutions to numerical, real-valued test 

problems. Differential evolution algorithms (DEs) are one type of recently 

introduced EA (Price, etc. 2005). DEs have been proposed to overcome the 

poor local search ability of genetic algorithms (GAs) (Holland, 1975). Selection 

operations used represent an important difference between GAs and DEs. For 

GAs, the chance of being selected as a parent solution depends on the 

relevant solution’s fitness value (Krink, etc., 2004). In DEs, all solutions have 



 

an equal chance of being selected as parents, i.e., the chance does not 

depend on fitness values. After a new solution is produced using 

self-adjusting mutation and crossover operations, the new solution competes 

with its parent for the next generation, with the better one winning the 

competition. In other words, a greedy scheme is applied to select one of the 

two for the next generation. Using a mutation operation, which is able to self 

adapt, perform crossover operations and make selections via a greedy 

process, makes DEs fast-converging evolutionary algorithms (Krink, etc., 

2004). This has made them the subject of significant interest by researchers 

from a diverse range of fields, who have applied DEs to a variety of real world 

problems (Price, etc., 2005; Krink, etc., 2004). 

Swarm intelligence (SI) has been of increasing interest to research scientists 

in recent years. Swarm intelligence was defined by Bonabeau et al. as any 

attempt to design algorithms or distributed problem-solving devices based on 

the collective behavior of social insect colonies or other animals (Bonabeau, 

etc., 2004). Bonabeau et al. focused primarily on the social behavior of ants 

(Dorigo, 1992), fish (Li, 2003), birds (Kennedy, etc., 1995) and bees (Pham, 

etc., 2006) etc. However, the term “swarm” can be applied more generally to 

refer to any restrained collection of interacting agents or individuals. Although 

bees swarming around a hive is the classical example of “swarm”, swarms 

can easily be extended to other systems with similar architectures. 

A few models have been developed to model the intelligent behaviors of 

honeybee swarms and applied to solve combinatorial type problems. Yang 

(2006) presented a virtual bee algorithm (VBA) that is effective when applied to 

function optimization problems. However, while the proposed algorithm was 

similar to GA, it was much more efficient due to the parallelism of multiple 

independent bees. VBA was tested on two functions with two parameters, 

single-peaked and multi-peaked, respectively. Results show the VBA as 

significantly more efficient than GA. Karaboga et al. (2009) presented an 

artificial bee colony (ABC) algorithm and expanded its experimental results 

(Basturk, etc., 2006). It has been pointed out that the ABC algorithm 

outperforms GA for functions exhibiting multi-modality or uni-modality. Pham 

et al. (2006) presented an original bee algorithm (BA) and applied to two 

standard functional optimization problems with two and six dimensions. 

Results demonstrated the BA able to find solutions very close to the optimum, 

showing that BA generally outperformed GA. Ozbakir et al. (2010) developed 

a modified BA (Pham, etc., 2006) to solve generalized assignment problems 

(GAP) that presented an ejection chain neighborhood mechanism. This study 

found that the proposed BA offers the potential to solve GAP. However, while 

BA (Pham, etc., 2006) offers the potential to conduct global searches and 



 

uses a simpler mechanism in comparison with GA, it is weak in local 

searching and does not records past searching experiences during the 

optimization search process. 

For instance, a flock of birds may be thought of as a swarm whose 

individual agents are birds. Particle swarm optimization (PSO), which has 

become quite popular for many researchers recently (Tsai, 2010; Parsopoulos, 

etc. 2007), models the social behavior of birds (Kennedy, 1995). PSO is a 

population-based stochastic optimization technique that is well adapted to 

the optimization of nonlinear functions in multi-dimensional space. PSO 

consists of a swarm of particles moving in a search space of potential 

problem solutions. Every particle has a position vector representing a 

candidate solution to the problem and a velocity vector. Moreover, each 

particle contains a small memory that stores its own best position so far and a 

global best position obtained through communication with neighbor particles. 

PSO potentially used in local searching, and records past searching 

experiences during optimization search process. However, it converges early 

in highly discrete problems (Korenaga, etc., 2006). 

Hence, in order to improve BA and PSO, Cheng (2012) and Lien (2012, 

2014) proposed an optimization hybrid swarm algorithm, named the particle 

bee algorithm (PBA), based on intelligent behavior traits of bird and honeybee 

swarms. PBA has been successful applied to many case studies (Cheng and 

Lien, 2012; Lien and Cheng, 2012, 2014). PBA integrates their advantages 

and a self-parameter-updating technique to prevent becoming trapped in a 

local optimum in high dimensional problems. This study compares the 

performance of the PBA algorithm with that of DE, EA, PSO (Krink, etc., 2004) 

and BA (Pham, etc., 2006) for a set of well-known test functions (Krink, etc., 

2004). Also, the performance of PBA is analyzed under conditions in which 

control parameter values change. In Section 2 and 3, bee algorithm (BA) and 

particle swarm optimization (PSO) are described and then the particle bee 

algorithm (PBA) is introduced in Section 4. In Section 5, the experimental 

study is described. Obtained simulation results are presented and discussed 

in Section 6. 

2. BEE ALGORITHM (BA) 

Bee algorithm (BA) is an optimization algorithm inspired by the natural 

foraging behavior of honeybees as they work to find an optimal solution 

(Eberhart, 2006). The BA flowchart shows in Fig. 1. The BA (Pham, etc., 2006) 

requires the setting of a number of parameters, including number of scout 

bees (n), number of elite sites selected from n visited sites (e), number of best 

sites out of n visited sites (b), number of bees recruited for elite e sites (n1), 

number of bees recruited for best b sites (n2), number of bees recruited for 



 

other visited sites (r), and neighborhood (ngh) of bees dance search and 

stopping criterion. 

Start

(1) Initial scout bees (n)

(3) Select Elite bees from 

scout bees (e)

(4) Neighborhood search 

recruit bees (n1)

Yes

(5) Select Best bees from 

scout bees (b)

(6) Neighborhood search 

recruit bees (n2)

End

(2) Evaluate fitness

(8) Convergence ?

No

(7) Randomize recruit 

random bees (r)

 
Fig.1. Bee algorithm flowchart 

Step (1) Initialize scout bees 

The BA starts with n scout bees placed randomly in the search space. 

Step (2) Evaluate fitness 

Start the loop and evaluate scout bee fitness. 

 

Step (3) Select elite sites (e) from scout bees 

Bees that have the highest fitness are chosen as elite bees, and sites 

they visit are chosen for neighborhood search. 

Step (4) Recruit bees (n1) begin neighborhood dancing search 

The algorithm conducts searches in the neighborhood of selected 

sites, assigning more recruit bees to dance near to elite sites. Recruit 

bees can be chosen directly according to the fitness associated with 

dancing sites Eq. (1). 

( ) ( ) ( )txRandtxtx ididid +−=+ 2)5.0(1
……..……...………………....(1) 

where xi is ith x and i = 1 to n; d is dimension in xi and d = 1 to D, t is 

iteration; xid(t+1) is dth dimension in ith x and in t+1 iteration; xid(t) is dth 

dimension in ith x and in t iteration; Rand is a uniformly distributed real 

random number within the range 0 to 1; n is number of scout bees. 

Step (5) Select best sites (b) from scout bees 

Otherwise, elite bees with the highest fitness are chosen as best bees, 



 

and sites they visit are chosen for neighborhood search. 

Step (6) Recruit bees (n2) begin neighborhood dancing search 

The algorithm conducts searches in the neighborhood of the selected 

sites, assigning more recruit bees to dance near the best sites. 

Recruit bees can be chosen directly according to the fitness 

associated with dancing sites Eq. (1). 

Elite bees differ from best bees as the former focus on local search in 

order to search the local optimum solution, and the latter focus on 

global search in order to avoid missing other potential global optimum 

solutions. Alternatively, fitness values are used to determine the 

elite/best bees selected. Dancing searches in the neighborhood of 

elite and best sites that represent more promising solutions are made 

more detailed by recruiting more bees to follow them than others. 

Step (7) Recruit random bees (r) for other visited sites 

The remaining bees in the population are assigned randomly around 

the search space scouting for new potential solutions. 

Step (8) Convergence? 

Throughout step (3) to step (7), such differential recruitment is a key 

BA operation. However, in step (8) only bees with the highest fitness 

for the current iteration will be selected for the following iteration. 

While there is no such restriction in nature, it is introduced here to 

reduce the number of points to be explored. These steps are repeated 

until a stopping criterion is met that determines whether bees are to 

be abandoned or memorized. 

From Eq. (1), BA dependence on random search makes it relatively weak in 

local search activities. Also, BA does not have past searching records of PSO 

capabilities. 

 

3. PARTICLE SWARM OPTIMIZATION (PSO) 

Particle swarm optimization (PSO) is an optimization algorithm inspired by 

the natural foraging behavior of birds to find an optimal solution (Kennedy, 

1995). In PSO, a population of particles starts to move in a search space by 

following current optimum particles and changing their positions in order to 

find the optimum. The position of a particle refers to a possible solution of the 

function to be optimized. Evaluating the function by the particle’s position 

provides the fitness of that solution. In every iteration, each particle is updated 

by following the best current particle solution achieved so far (local best) and 

the best of the population (global best). When a particle takes part of the 

population as its topological neighbors, the best value becomes a local best. 

Particles tend to move toward good areas in the search space in response to 



 

information spreading through the swarm. A particle moves to a new position 

calculated by the velocity updated at each time step t by Eq. (2). Eq. (3) is 

then used to calculate the new velocity, as the sum of the previous position 

and the velocity. 

( ) ( ) ( )11 ++=+ tvtxtx ididid …..…...………………………………………………..(2) 

where xi is ith x and i = 1 to n; vi is ith v; d is dimension in xi or v and d = 1 to D; 

t is iteration; xid(t) is dth dimension in ith x and in t iteration; vid(t+1) is dth 

dimension in ith v and in t+1 iteration; xid(t+1) is dth dimension in ith x and in t+1 

iteration; n is number of particles. 

)]()([)]()([)()1( 21 txtGRandctxtPRandctvwtv iddidididid −+−+=+ .......(3) 

where vid(t) is dth dimension in ith v and in t iteration; w is inertia weight and 

controls the magnitude of the old velocity vid(t) in the calculation of the new 

velocity; Pid (t)is dth dimension in ith local best particle and in t iteration; Gd(t) is 

dth dimension global best particle in t iteration; c1 and c2 determine the 

significance of Pid(t) and Gd(t); Rand is a uniformly distributed real random 

number within the range 0 to 1. 

Furthermore, vid at any time-step of the algorithm is constrained by 

parameters vmax and vmin. The swarm in PSO is initialized by assigning each 

particle to a uniformly and randomly chosen position in the search space. 

Velocities are initialized randomly in the range vmax to vmin. Particle velocities 

on each dimension are clamped to a maximum velocity vmax. If the velocity of 

that dimension exceeds vmax or vmin (user-specified parameters), dimension 

velocity is limited to vmax or vmin. Fig. 2 shows the PSO flowchart. 
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(5) Update particles
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Start

(1) Initial particles with 

position and velocity (n)

No
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End
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(6) Convergence ?

 

Fig.2. Particle swarm optimization flowchart 

Step (1) Initialize particles 

The PSO starts with n particles being randomly introduced with 

respective positions and velocities into the search space. 

Step (2) Evaluate fitness 

Start the loop and evaluate particle fitness. 

Step (3) Update Gbest particle 

The algorithm updates global best particle through problem iterations. 

Step (4) Update Pbest particles 

The algorithm updates local best particles through the current 

problem iteration. 

Step (5) Update particles using steps (3) and (4) 

The algorithm updates particles using Eq. (2) and Eq. (3). 

Step (6) Convergence? 

The above steps are repeated until the stop criterion is met. 

 

However, while PSO may be employed in local search and has a track 

record of experience being used in optimization search processes, it tends to 

achieve early convergence in highly discrete problems (Korenaga, 2006). 

 

4. PROPOSED PARTICLE BEE ALGORITHM (PBA) 

In order to integrate BA global search ability with the local search 

advantages of PSO, Cheng (2012) and Lien (2012, 2014) proposed an 

optimization hybrid swarm algorithm, the particle bee algorithm (PBA), based 

on the intelligent behaviors of bird and honeybee swarms. For improved BA 



 

local search ability, PSO global search ability and to seek records past 

experience during optimization search process, this study reconfigures the 

neighborhood dance search (Pham, etc., 2006) as a PSO search (Kennedy, 

1995). Based on cooperation between bees (BA) and birds (PSO), the 

proposed algorithm improves BA neighborhood search using PSO search. 

Therefore, PBA employs no recruit bee searching around “elite” or ”best” 

positions (as BA does). Instead, a PSO search is used for all elite and best 

bees. In other words, after PSO search, the number of “elite”, “best” and 

“random” bees equals the number of scout bees.  

In PBA, the particle bee colony contains four groups, namely (1) number of 

scout bees (n), (2) number of elite sites selected out of n visited sites (e), (3) 

number of best sites out of n visited sites (b), and (4) number of bees recruited 

for the other visited sites (r). The first half of the bee colony consists of elite 

bees, and the second half includes the best and random bees. The particle 

bee colony contains two parameters, i.e., number of iteration for elite bees by 

PSO (Peitr) and number of iteration for best bees by PSO (Pbitr). Fig. 3 shows 

the PBA flowchart. 

 

Start

(1) Initial scout bees (n)

Yes

No

(3) Select Elite bees from 

scout bees (e)

(5) Select Best bees from 

scout bees (b)

(6) PSO proceduce (Pbitr)(4) PSO procedure (Peitr)

End

(9) Convergence ?

(2) Evaluate fitness

(7) Random assign scout 

bees (r)

(8) Self-parameter update

 

Fig.3. Particle Bee algorithm flowchart 

Step (1) Initialize scout bees 

The PBA starts with n scout bees being randomly placed with 



 

respective positions and velocities in the search space. 

Step (2) Evaluate fitness 

Start the loop and evaluate scout bee fitness. 

Step (3) Select elite sites (e) from scout bees. 

Elite sites are selected for each elite bee, whose total number is equal 

to half the number of scout bees. 

Step (4) Elite bees begin the PSO procedure using Peitr iteration. 

In this step, Eq. (2) is used to produce new particle bees from elite 

and best bees. Elite and best bees velocity updates are performed as 

indicated in Eq. (3). 

 

Step (5) Select best sites (b) from scout bees. 

Best sites are selected for each best bee, the total number of which 

equals one-quarter of the number of scout bees. 

Step (6) Best bees begin the PSO procedure using Pbitr iteration. 

In this step, new particle bees from elite and best bees are produced 

using Eq. (2). Elite and best bee velocities are updated as indicated in 

Eq. (3). 

Step (7) Recruit random bees (r) for other visited sites 

The random bees in the population are assigned randomly around the 

search space scouting for new potential solutions. The total number 

of random bees is one-quarter of the number of scout bees. 

Step (8) Self-parameter-updating for elite, best and random bees 

Furthermore, in order to prevent trapping into a local optimum in high 

dimensional problems, this study proposed a solution, namely a 

self-parameter updating technique, the idea for which comes from Ref. 

(Karaboga, etc., 2009). Eq. (4) describes the self-parameter updating 

equation. 

xid(new )= xid(cur)+ 2×(Rand-0.5)×(xid(old) – xjk)……….………..….………. (4) 

j = int (Rand × n) + 1…………………………….....………….….……....(5) 

k = int (Rand × d) + 1………………………………………….….……....(6) 

where xi is ith x and i = 1 to n; d is dimension in xi and d = 1 to D; xid(cur) 

is dth dimension in ith x and in current solution; xid(new) is dth 

dimension in ith x and in new solution; Rand is a uniformly distributed 

real random number within the range 0 to 1; j is the index of the 

solution chosen randomly from the colony as shows in Eq. (5), k is the 

index of the dimension chosen randomly from the dimension as 

shows in Eq. (6); n is number of scout bees. 

 

In step (8), after elite, best and random bees are distributed according 



 

to fineness, finesses are checked to indicate whether they should be 

abandoned or memorized using Eq. (4). If finesses of elite, best or 

random bees are improved by Eq. (4) to a degree that is superior to 

previous finesses, then these current finesses will be memorized. This 

differential recruitment is a key operation of the PBA between steps (3) 

and (8). 

Step (9) Convergence? 

In this step, only the bee with the highest fitness will be selected to 

form the next bee population. These steps are repeated until the stop 

criterion is met and bees are selected to be abandoned or memorized. 

In PBA, scout bees are used to classify both elite and best bees. 

Classification is controlled by scout bee fitness and optimized by control 

parameters called ‘‘Peitr” and “Pbitr”, which are important PBA control 

parameters. In the PBA, the idea of Peitr for elite bees gives a higher potential 

to search optimization solutions. The idea of Pbitr for best bees gives a 

second opportunity to search optimization solutions because luck continues 

to play a role in resource identification. Therefore, in this study, Peitr is always 

larger then Pbitr. In a robust search process, exploration and exploitation 

processes must be carried out together. In the PBA, while elite bees (Peitr) 

implement the exploitation process in the search space, best bees (Pbitr) and 

random bees control this process. 

 

5. EXPERIMENTS 

In order to evaluate PBA performance, some classical benchmark functions 

given by Krink (2004) are presented in Table 1. PBA results compare favorably 

with the DE and EA results of Krink (2004). This study equalized the total 

number of evaluations to 100,000 for the first two functions and 500,000 for 

the other three functions, as shown in Ref. (Krink, etc., 2004). In the PSO and 

BA, cycles were designated as 1,000 for f1 and f2 and 5,000 for f3, f4 and f5. In 

PBA, maximum number of cycles was designated for Bitr, Peitr, Pbitr as, 

respectively, 1,000, 15, and 9 for f1 and f2 and 5,000, 15, 9 for f3, f4 and f5. The 

number of elite bees totaled 50 percent of the colony and the number of best 

bees totaled 25 percent of the colony. In PBA, the number of random bees is 

taken n-e-b from the number of elite bees and best bees. The PBA used in the 

simulation studies and values assigned for the parameter settings of DE, EA, 

PSO in Ref. (Krink, etc., 2004) and BA in the Ref. (Pham, etc., 2006) are given 

in Table 2. From the table, it can see that assigned values for DE, EA and PSO 

in Ref. (Krink, etc., 2004) and BA in Ref. (Pham, etc., 2006) are the same as 

recommended values in the literature for the associated control parameters. 

In experiments, f1 is a 2 dimensional Schaffer function, f2 is a 5 dimensional 



 

Sphere function, f3(x), f4(x) and f5(x) are 50 dimensional Griewank, Rastrigin 

and Rosenbrock functions. Parameter ranges, formulations and global 

optimum values of these functions are given in Table 1. Schaffer and Sphere 

functions usually test for search performance as basic optimization problems. 

Since local optima numbers increase with dimensionality, the Griewant 

function is strongly multimodal. The multimodality disappears for sufficiently 

high dimensionalities (D>30) and the problem seems unimodal. The Rastrigin 

function is based on the Sphere function with the addition of cosine 

modulation to produce many local minima. Thus, the function is multimodal. 

Minima locations are regularly distributed. The difficult part about finding 

optimal solutions to this function is that an optimization algorithm can easily 

become trapped in a local optimum on its way toward the global optimum. 

The Rosenbrock function is well-known classic optimization problem. The 

global optimum is inside a long, narrow, parabolic shaped flat valley. Due to 

the difficulties in converging on the global optimum of this function, variables 

are strongly dependent, and gradients generally do not point toward the 

optimum. Schaffer, Sphere, Griewank, Rastrigin and Rosenbrock functions, 

surface plot, and contour line are shown in Fig.4 to Fig.8. 
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Note: where i = 1 to n. 

Table 2 

Parameter values used in the experiments 

DE EA PSO BA PBA 

n 50 n 100 n 20 n 100 n 100 
CF 0.8 Pc 1.0 w 1.0~0.7 e n/2 e n/2 
f 0.5 Pm 0.3 v Xmin/10~Xmax/10 b n/4 b n/4 
  M 0.01   r n/4 r n/4 
  N 10   n1 2 w 1.0~0.7 
      n2 1 v Xmin/10~Xmax/10 
        Peitr 15 
        Pbitr 9 

n=population size (colony size); CF=crossover factor for DE; pc=crossover 



 

rate for EA; pm=mutation rate; M=mutation variance; N=elite size; f=scaling 

factor; w=inertia weight; v=limit of velocity for PSO; e=elite bee number; 

b=best bee number; r=random bee number; n1= elite bee neighborhood 

number; n2=best bee neighborhood number; Peitr=PSO iteration of elite bees; 

Pbitr=PSO iteration of best bees. 

 

Fig.4. Schaffer function 

 

Fig.5. Sphere function 

 

Fig.6. Griewank function 

 

Fig.7. Rastrigin function 

 

Fig.8. Rosenbrock function 

 

6. RESULTS AND DISCUSSION 

Each experiment ran for 30 runs, and average function values for the best 

solutions were found and recorded. Mean and standard deviations of function 

values obtained by DE (Krink, etc., 2004), EA (Krink, etc., 2004), PSO (Krink, 



 

etc., 2004), BA (Pham, etc., 2006) and PBA under the same conditions are 

given in Table 2. Values less than E-12 were reported as 0. For f1 and f2 

functions, DE, EA BA and PBA found the optimum value within the given cycle 

duration, while PSO could not. For f3 and f4 functions, while DE and PBA 

showed equal performance, it found that optimum, EA, PSO and BA 

demonstrated relatively worse performance. For the f5 function, PBA 

produced the best results. As seen from results presented in Table 3, the PBA 

produced the best performance amongst all algorithms considered in the 

present investigation. 

Table 3 

The results obtained by DE, EA, PSO, BA and PBA 

Functions 
Methods 

f1 
Schaffer 

f2 
Sphere 

f3 
Griewank 

f4 
Rastrigin 

f5 
Rosenbrock 

DE 
Mean 0 0 0 0 35.32 
Std 0 0 0 0 0.27 

EA 
Mean 0 0 6.24E-3 32.67 79.82 
Std 0 0 1.38E-3 1.94 10.45 

PSO 
Mean 4.53E-3 2.5113E-8 1.55 13.12 5142.45 
Std 9.00E-4 0 6.70E-2 1.45 2929.47 

BA 
Mean 0 0 88.27 0 48.65 
Std 0 0 5.18 0 0.43 

PBA 
Mean 0 0 0 0 10.71 
Std 0 0 0 0 1.70 

 

In order to analyze its behavior, PBA was run using different population 

(colony) sizes and Table 3 values. As shown in Table 4, best function value 

means obtained using different colony sizes were 25, 50, 75 and 100 for all 

functions presented. The progress of mean best values presented in Table 4 

is shown in Figs. 9 to 13. From Table 4 and Figs. 9 to 13, it can be concluded 

that, as population size increases, the algorithm produces better results. 

However, once the colony size exceeds 75, any increment in fitness value will 

not significantly improve PBA algorithm performance. For the test problems 

carried out in this work, a colony size of 75 to 100 can provide an acceptable 

convergence speed for the search. 

 

Table 4 

Mean of function values obtained by PBA under different colony sizes 

 
Colony sizes 

25 50 75 100 

F
u

n
c
ti
o

n
s
 Schaffer 1.46E-3 0 0 0 

Sphere 0 0 0 0 

Griewank 2.04E-9 0 0 0 

Rastrigin 6.64E-8 2.92E-11 0 0 

Rosenbrock 86.75 44.04 20.31 10.71 
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Fig.9. Evolution of mean best values for Schaffer function on different colony 

sizes 
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Fig.10. Evolution of mean best values for Sphere function on different colony 

sizes 
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Fig.11. Evolution of mean best values for Griewank function on different 

colony sizes 
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Fig.12. Evolution of mean best values for Rastrigin function on different colony 

sizes 
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Fig.13. Evolution of mean best values for Rosenbrock function on different 

colony sizes 

 

 

Results of colony sizes ranging from 75 to 100 can provide an acceptable 

convergence speed for search. In order to analyze PBA behavior, this paper 

has adapted 30 runs with different elite and best bee PSO iteration sizes (Peitr, 

Pbitr). In Table 5, the mean of best function values with different elite and best 

bees PSO iteration sizes vary as (15, 9), (30, 18) and (60, 36) for the presented 

Rastrigin and Rosenbrock function. Progress of the mean best values 

presented in Table 5 is illustrated in Figs. 14 to 17. From Table 5 and Figs. 14 

to 17, it can be concluded that, during the period in which elite and best bee 

PSO iterations increase until (30, 18), the algorithm produces better results. 

However, after a sufficient value for iteration size exceeds (30, 18), the fitness 

value does not improve, but rather worsens. For test problems carried out in 

this work, elite and best bee PSO iteration sizes of (15, 9) to (30, 18) can 

provide an acceptable convergence speed for search. 



 

Table 5 

 Mean of function values obtained by PBA under different PSO iteration sizes 

PSO iteration sizes 
(8, 5) (15, 9) (30, 18) (60, 36) 

Colony size Functions 

75 
Rastrigin 1.18E-7 0 1.00 4.68 

Rosenbrock 193.61 20.31 21.53 37.14 

100 
Rastrigin 3.90E-7 0 1.49 8.31 

Rosenbrock 91.10 10.71 10.20 31.83 
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Fig.14. Mean best values for Rastrigin function on 75 colony size and different 

PSO iteration sizes 
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Fig.15. Mean best values for Rastrigin function on 100 colony size and 

different PSO iteration sizes 
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Fig.16. Mean best values for Rosenbrock function on 75 colony size and 

different PSO iteration sizes 
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Fig.17. Mean best values for Rosenbrock function on 100 colony size and 

different PSO iteration sizes 

 

7. CONCLUSION 

In the previous section, the performance of the particle bee algorithm (PBA) 

was compared with differential evolution (DE), evolutionary algorithm (EA), 

particle swarm optimization (PSO), and bee algorithm (BA) in terms of both 

multi-dimensional and multimodal numeric problems. In terms of f1 and f2 

functions, DE, EA BA and PBA identified the optimum value within the given 

cycle duration, while PSO could not. For f3 and f4 functions, while DE and PBA 

showed equal performance and found the optimum, EA, PSO and BA 

demonstrated performance that was relatively poorer than DE and PBA. For 

the f5 function, PBA produced the best results. Results show that PBA 

performs better than the mentioned algorithms on each benchmark numerical 

function. Behavior of PBA under different control parameter values was also 

analyzed. Results show that the PBA suggests a colony size range of 75 to 

100 and a PSO iteration size of (15, 9) to (30, 18) in order to provide an 

acceptable convergence search speed. 
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