

UDC 57

Li-Chuan L., Unurjargal D. On the Performance Evaluation of a

Collaborative Swarm Intelligence Approach Particle Bee Algorithm

Li-Chuan Lien,

1 Assistant Professor, Dep. of Civil engineering, Chung Yuan Christian University,

Taoyuan, Taiwan

Unurjargal Dolgorsuren

2 Ph.D student, Dep. of Civil engineering, Chung Yuan Christian University, Taoyuan,

Taiwan

Abstract. Swarm intelligence (SI), an artificial intelligence (AI) approach widely used in many
complex optimization problems, models the collective behavior of social systems such as honeybees and
birds. This study evaluated a collaborative swarm intelligence approach optimization algorithm, named
the particle bee algorithm (PBA). The PBA is based on a particular aspect of bird (particle swarm
optimization, PSO) and honeybee swarm (bee algorithm, BA) behaviors that integrates their
advantages and proposes a self-parameter-updating technique to prevent being trapped into a local
optimum in high dimensional problems. This study compares the performance of PBA with that of
differential evolution (DE), evolutionary algorithms (EA), particle swarm optimization (PSO) and bee
algorithm (BA) for multi-dimensional numeric problems. For test problems carried out in this work,
colony sizes ranging from 75 to 100 of PBA can provide an acceptable convergence speed for an
optimization search. Besides, elite and best bee PSO iteration sizes of (15, 9) to (30, 18) can provide an
acceptable convergence speed for an optimization search. Results show PBA performance to be
comparable to that of mentioned algorithms, and the potential for its being efficiently employed to solve
benchmark numerical problems with high dimensionality.

Keywords: Swarm intelligence, Bee algorithm, Particle swarm optimization, Particle bee
algorithm.

DOI 10.54092/25421085_2021_11_49

Рецензент: Ерофеевская Лариса Анатольевна - кандидат биологических наук,
старший научный сотрудник. Федеральное государственное бюджетное

учреждение науки Федеральный исследовательский центр «Якутский научный
центр Сибирского отделения Российской академии наук», Институт проблем

нефти и газа Сибирского отделения Российской академии наук (ИПНГ СО РАН)

1. INTRODUCTION

Evolutionary algorithms (EAs), generally known as general-purpose

optimization algorithms, are often used to find, within a reasonable

compilation time, near-optimal solutions to numerical, real-valued test

problems. Differential evolution algorithms (DEs) are one type of recently

introduced EA (Price, etc. 2005). DEs have been proposed to overcome the

poor local search ability of genetic algorithms (GAs) (Holland, 1975). Selection

operations used represent an important difference between GAs and DEs. For

GAs, the chance of being selected as a parent solution depends on the

relevant solution’s fitness value (Krink, etc., 2004). In DEs, all solutions have

an equal chance of being selected as parents, i.e., the chance does not

depend on fitness values. After a new solution is produced using

self-adjusting mutation and crossover operations, the new solution competes

with its parent for the next generation, with the better one winning the

competition. In other words, a greedy scheme is applied to select one of the

two for the next generation. Using a mutation operation, which is able to self

adapt, perform crossover operations and make selections via a greedy

process, makes DEs fast-converging evolutionary algorithms (Krink, etc.,

2004). This has made them the subject of significant interest by researchers

from a diverse range of fields, who have applied DEs to a variety of real world

problems (Price, etc., 2005; Krink, etc., 2004).

Swarm intelligence (SI) has been of increasing interest to research scientists

in recent years. Swarm intelligence was defined by Bonabeau et al. as any

attempt to design algorithms or distributed problem-solving devices based on

the collective behavior of social insect colonies or other animals (Bonabeau,

etc., 2004). Bonabeau et al. focused primarily on the social behavior of ants

(Dorigo, 1992), fish (Li, 2003), birds (Kennedy, etc., 1995) and bees (Pham,

etc., 2006) etc. However, the term “swarm” can be applied more generally to

refer to any restrained collection of interacting agents or individuals. Although

bees swarming around a hive is the classical example of “swarm”, swarms

can easily be extended to other systems with similar architectures.

A few models have been developed to model the intelligent behaviors of

honeybee swarms and applied to solve combinatorial type problems. Yang

(2006) presented a virtual bee algorithm (VBA) that is effective when applied to

function optimization problems. However, while the proposed algorithm was

similar to GA, it was much more efficient due to the parallelism of multiple

independent bees. VBA was tested on two functions with two parameters,

single-peaked and multi-peaked, respectively. Results show the VBA as

significantly more efficient than GA. Karaboga et al. (2009) presented an

artificial bee colony (ABC) algorithm and expanded its experimental results

(Basturk, etc., 2006). It has been pointed out that the ABC algorithm

outperforms GA for functions exhibiting multi-modality or uni-modality. Pham

et al. (2006) presented an original bee algorithm (BA) and applied to two

standard functional optimization problems with two and six dimensions.

Results demonstrated the BA able to find solutions very close to the optimum,

showing that BA generally outperformed GA. Ozbakir et al. (2010) developed

a modified BA (Pham, etc., 2006) to solve generalized assignment problems

(GAP) that presented an ejection chain neighborhood mechanism. This study

found that the proposed BA offers the potential to solve GAP. However, while

BA (Pham, etc., 2006) offers the potential to conduct global searches and

uses a simpler mechanism in comparison with GA, it is weak in local

searching and does not records past searching experiences during the

optimization search process.

For instance, a flock of birds may be thought of as a swarm whose

individual agents are birds. Particle swarm optimization (PSO), which has

become quite popular for many researchers recently (Tsai, 2010; Parsopoulos,

etc. 2007), models the social behavior of birds (Kennedy, 1995). PSO is a

population-based stochastic optimization technique that is well adapted to

the optimization of nonlinear functions in multi-dimensional space. PSO

consists of a swarm of particles moving in a search space of potential

problem solutions. Every particle has a position vector representing a

candidate solution to the problem and a velocity vector. Moreover, each

particle contains a small memory that stores its own best position so far and a

global best position obtained through communication with neighbor particles.

PSO potentially used in local searching, and records past searching

experiences during optimization search process. However, it converges early

in highly discrete problems (Korenaga, etc., 2006).

Hence, in order to improve BA and PSO, Cheng (2012) and Lien (2012,

2014) proposed an optimization hybrid swarm algorithm, named the particle

bee algorithm (PBA), based on intelligent behavior traits of bird and honeybee

swarms. PBA has been successful applied to many case studies (Cheng and

Lien, 2012; Lien and Cheng, 2012, 2014). PBA integrates their advantages

and a self-parameter-updating technique to prevent becoming trapped in a

local optimum in high dimensional problems. This study compares the

performance of the PBA algorithm with that of DE, EA, PSO (Krink, etc., 2004)

and BA (Pham, etc., 2006) for a set of well-known test functions (Krink, etc.,

2004). Also, the performance of PBA is analyzed under conditions in which

control parameter values change. In Section 2 and 3, bee algorithm (BA) and

particle swarm optimization (PSO) are described and then the particle bee

algorithm (PBA) is introduced in Section 4. In Section 5, the experimental

study is described. Obtained simulation results are presented and discussed

in Section 6.

2. BEE ALGORITHM (BA)

Bee algorithm (BA) is an optimization algorithm inspired by the natural

foraging behavior of honeybees as they work to find an optimal solution

(Eberhart, 2006). The BA flowchart shows in Fig. 1. The BA (Pham, etc., 2006)

requires the setting of a number of parameters, including number of scout

bees (n), number of elite sites selected from n visited sites (e), number of best

sites out of n visited sites (b), number of bees recruited for elite e sites (n1),

number of bees recruited for best b sites (n2), number of bees recruited for

other visited sites (r), and neighborhood (ngh) of bees dance search and

stopping criterion.

Start

(1) Initial scout bees (n)

(3) Select Elite bees from

scout bees (e)

(4) Neighborhood search

recruit bees (n1)

Yes

(5) Select Best bees from

scout bees (b)

(6) Neighborhood search

recruit bees (n2)

End

(2) Evaluate fitness

(8) Convergence ?

No

(7) Randomize recruit

random bees (r)

Fig.1. Bee algorithm flowchart

Step (1) Initialize scout bees

The BA starts with n scout bees placed randomly in the search space.

Step (2) Evaluate fitness

Start the loop and evaluate scout bee fitness.

Step (3) Select elite sites (e) from scout bees

Bees that have the highest fitness are chosen as elite bees, and sites

they visit are chosen for neighborhood search.

Step (4) Recruit bees (n1) begin neighborhood dancing search

The algorithm conducts searches in the neighborhood of selected

sites, assigning more recruit bees to dance near to elite sites. Recruit

bees can be chosen directly according to the fitness associated with

dancing sites Eq. (1).

() () ()txRandtxtx ididid +−=+ 2)5.0(1
……..……...………………....(1)

where xi is ith x and i = 1 to n; d is dimension in xi and d = 1 to D, t is

iteration; xid(t+1) is dth dimension in ith x and in t+1 iteration; xid(t) is dth

dimension in ith x and in t iteration; Rand is a uniformly distributed real

random number within the range 0 to 1; n is number of scout bees.

Step (5) Select best sites (b) from scout bees

Otherwise, elite bees with the highest fitness are chosen as best bees,

and sites they visit are chosen for neighborhood search.

Step (6) Recruit bees (n2) begin neighborhood dancing search

The algorithm conducts searches in the neighborhood of the selected

sites, assigning more recruit bees to dance near the best sites.

Recruit bees can be chosen directly according to the fitness

associated with dancing sites Eq. (1).

Elite bees differ from best bees as the former focus on local search in

order to search the local optimum solution, and the latter focus on

global search in order to avoid missing other potential global optimum

solutions. Alternatively, fitness values are used to determine the

elite/best bees selected. Dancing searches in the neighborhood of

elite and best sites that represent more promising solutions are made

more detailed by recruiting more bees to follow them than others.

Step (7) Recruit random bees (r) for other visited sites

The remaining bees in the population are assigned randomly around

the search space scouting for new potential solutions.

Step (8) Convergence?

Throughout step (3) to step (7), such differential recruitment is a key

BA operation. However, in step (8) only bees with the highest fitness

for the current iteration will be selected for the following iteration.

While there is no such restriction in nature, it is introduced here to

reduce the number of points to be explored. These steps are repeated

until a stopping criterion is met that determines whether bees are to

be abandoned or memorized.

From Eq. (1), BA dependence on random search makes it relatively weak in

local search activities. Also, BA does not have past searching records of PSO

capabilities.

3. PARTICLE SWARM OPTIMIZATION (PSO)

Particle swarm optimization (PSO) is an optimization algorithm inspired by

the natural foraging behavior of birds to find an optimal solution (Kennedy,

1995). In PSO, a population of particles starts to move in a search space by

following current optimum particles and changing their positions in order to

find the optimum. The position of a particle refers to a possible solution of the

function to be optimized. Evaluating the function by the particle’s position

provides the fitness of that solution. In every iteration, each particle is updated

by following the best current particle solution achieved so far (local best) and

the best of the population (global best). When a particle takes part of the

population as its topological neighbors, the best value becomes a local best.

Particles tend to move toward good areas in the search space in response to

information spreading through the swarm. A particle moves to a new position

calculated by the velocity updated at each time step t by Eq. (2). Eq. (3) is

then used to calculate the new velocity, as the sum of the previous position

and the velocity.

() () ()11 ++=+ tvtxtx ididid …..…...………………………………………………..(2)

where xi is ith x and i = 1 to n; vi is ith v; d is dimension in xi or v and d = 1 to D;

t is iteration; xid(t) is dth dimension in ith x and in t iteration; vid(t+1) is dth

dimension in ith v and in t+1 iteration; xid(t+1) is dth dimension in ith x and in t+1

iteration; n is number of particles.

)]()([)]()([)()1(21 txtGRandctxtPRandctvwtv iddidididid −+−+=+(3)

where vid(t) is dth dimension in ith v and in t iteration; w is inertia weight and

controls the magnitude of the old velocity vid(t) in the calculation of the new

velocity; Pid (t)is dth dimension in ith local best particle and in t iteration; Gd(t) is

dth dimension global best particle in t iteration; c1 and c2 determine the

significance of Pid(t) and Gd(t); Rand is a uniformly distributed real random

number within the range 0 to 1.

Furthermore, vid at any time-step of the algorithm is constrained by

parameters vmax and vmin. The swarm in PSO is initialized by assigning each

particle to a uniformly and randomly chosen position in the search space.

Velocities are initialized randomly in the range vmax to vmin. Particle velocities

on each dimension are clamped to a maximum velocity vmax. If the velocity of

that dimension exceeds vmax or vmin (user-specified parameters), dimension

velocity is limited to vmax or vmin. Fig. 2 shows the PSO flowchart.

(3) Update Gbest particle

(5) Update particles

(2) Evaluate fitness

Start

(1) Initial particles with

position and velocity (n)

No

Yes

End

(4)Update Pbest particles

(6) Convergence ?

Fig.2. Particle swarm optimization flowchart

Step (1) Initialize particles

The PSO starts with n particles being randomly introduced with

respective positions and velocities into the search space.

Step (2) Evaluate fitness

Start the loop and evaluate particle fitness.

Step (3) Update Gbest particle

The algorithm updates global best particle through problem iterations.

Step (4) Update Pbest particles

The algorithm updates local best particles through the current

problem iteration.

Step (5) Update particles using steps (3) and (4)

The algorithm updates particles using Eq. (2) and Eq. (3).

Step (6) Convergence?

The above steps are repeated until the stop criterion is met.

However, while PSO may be employed in local search and has a track

record of experience being used in optimization search processes, it tends to

achieve early convergence in highly discrete problems (Korenaga, 2006).

4. PROPOSED PARTICLE BEE ALGORITHM (PBA)

In order to integrate BA global search ability with the local search

advantages of PSO, Cheng (2012) and Lien (2012, 2014) proposed an

optimization hybrid swarm algorithm, the particle bee algorithm (PBA), based

on the intelligent behaviors of bird and honeybee swarms. For improved BA

local search ability, PSO global search ability and to seek records past

experience during optimization search process, this study reconfigures the

neighborhood dance search (Pham, etc., 2006) as a PSO search (Kennedy,

1995). Based on cooperation between bees (BA) and birds (PSO), the

proposed algorithm improves BA neighborhood search using PSO search.

Therefore, PBA employs no recruit bee searching around “elite” or ”best”

positions (as BA does). Instead, a PSO search is used for all elite and best

bees. In other words, after PSO search, the number of “elite”, “best” and

“random” bees equals the number of scout bees.

In PBA, the particle bee colony contains four groups, namely (1) number of

scout bees (n), (2) number of elite sites selected out of n visited sites (e), (3)

number of best sites out of n visited sites (b), and (4) number of bees recruited

for the other visited sites (r). The first half of the bee colony consists of elite

bees, and the second half includes the best and random bees. The particle

bee colony contains two parameters, i.e., number of iteration for elite bees by

PSO (Peitr) and number of iteration for best bees by PSO (Pbitr). Fig. 3 shows

the PBA flowchart.

Start

(1) Initial scout bees (n)

Yes

No

(3) Select Elite bees from

scout bees (e)

(5) Select Best bees from

scout bees (b)

(6) PSO proceduce (Pbitr)(4) PSO procedure (Peitr)

End

(9) Convergence ?

(2) Evaluate fitness

(7) Random assign scout

bees (r)

(8) Self-parameter update

Fig.3. Particle Bee algorithm flowchart

Step (1) Initialize scout bees

The PBA starts with n scout bees being randomly placed with

respective positions and velocities in the search space.

Step (2) Evaluate fitness

Start the loop and evaluate scout bee fitness.

Step (3) Select elite sites (e) from scout bees.

Elite sites are selected for each elite bee, whose total number is equal

to half the number of scout bees.

Step (4) Elite bees begin the PSO procedure using Peitr iteration.

In this step, Eq. (2) is used to produce new particle bees from elite

and best bees. Elite and best bees velocity updates are performed as

indicated in Eq. (3).

Step (5) Select best sites (b) from scout bees.

Best sites are selected for each best bee, the total number of which

equals one-quarter of the number of scout bees.

Step (6) Best bees begin the PSO procedure using Pbitr iteration.

In this step, new particle bees from elite and best bees are produced

using Eq. (2). Elite and best bee velocities are updated as indicated in

Eq. (3).

Step (7) Recruit random bees (r) for other visited sites

The random bees in the population are assigned randomly around the

search space scouting for new potential solutions. The total number

of random bees is one-quarter of the number of scout bees.

Step (8) Self-parameter-updating for elite, best and random bees

Furthermore, in order to prevent trapping into a local optimum in high

dimensional problems, this study proposed a solution, namely a

self-parameter updating technique, the idea for which comes from Ref.

(Karaboga, etc., 2009). Eq. (4) describes the self-parameter updating

equation.

xid(new)= xid(cur)+ 2×(Rand-0.5)×(xid(old) – xjk)……….………..….………. (4)

j = int (Rand × n) + 1…………………………….....………….….……....(5)

k = int (Rand × d) + 1………………………………………….….……....(6)

where xi is ith x and i = 1 to n; d is dimension in xi and d = 1 to D; xid(cur)

is dth dimension in ith x and in current solution; xid(new) is dth

dimension in ith x and in new solution; Rand is a uniformly distributed

real random number within the range 0 to 1; j is the index of the

solution chosen randomly from the colony as shows in Eq. (5), k is the

index of the dimension chosen randomly from the dimension as

shows in Eq. (6); n is number of scout bees.

In step (8), after elite, best and random bees are distributed according

to fineness, finesses are checked to indicate whether they should be

abandoned or memorized using Eq. (4). If finesses of elite, best or

random bees are improved by Eq. (4) to a degree that is superior to

previous finesses, then these current finesses will be memorized. This

differential recruitment is a key operation of the PBA between steps (3)

and (8).

Step (9) Convergence?

In this step, only the bee with the highest fitness will be selected to

form the next bee population. These steps are repeated until the stop

criterion is met and bees are selected to be abandoned or memorized.

In PBA, scout bees are used to classify both elite and best bees.

Classification is controlled by scout bee fitness and optimized by control

parameters called ‘‘Peitr” and “Pbitr”, which are important PBA control

parameters. In the PBA, the idea of Peitr for elite bees gives a higher potential

to search optimization solutions. The idea of Pbitr for best bees gives a

second opportunity to search optimization solutions because luck continues

to play a role in resource identification. Therefore, in this study, Peitr is always

larger then Pbitr. In a robust search process, exploration and exploitation

processes must be carried out together. In the PBA, while elite bees (Peitr)

implement the exploitation process in the search space, best bees (Pbitr) and

random bees control this process.

5. EXPERIMENTS

In order to evaluate PBA performance, some classical benchmark functions

given by Krink (2004) are presented in Table 1. PBA results compare favorably

with the DE and EA results of Krink (2004). This study equalized the total

number of evaluations to 100,000 for the first two functions and 500,000 for

the other three functions, as shown in Ref. (Krink, etc., 2004). In the PSO and

BA, cycles were designated as 1,000 for f1 and f2 and 5,000 for f3, f4 and f5. In

PBA, maximum number of cycles was designated for Bitr, Peitr, Pbitr as,

respectively, 1,000, 15, and 9 for f1 and f2 and 5,000, 15, 9 for f3, f4 and f5. The

number of elite bees totaled 50 percent of the colony and the number of best

bees totaled 25 percent of the colony. In PBA, the number of random bees is

taken n-e-b from the number of elite bees and best bees. The PBA used in the

simulation studies and values assigned for the parameter settings of DE, EA,

PSO in Ref. (Krink, etc., 2004) and BA in the Ref. (Pham, etc., 2006) are given

in Table 2. From the table, it can see that assigned values for DE, EA and PSO

in Ref. (Krink, etc., 2004) and BA in Ref. (Pham, etc., 2006) are the same as

recommended values in the literature for the associated control parameters.

In experiments, f1 is a 2 dimensional Schaffer function, f2 is a 5 dimensional

Sphere function, f3(x), f4(x) and f5(x) are 50 dimensional Griewank, Rastrigin

and Rosenbrock functions. Parameter ranges, formulations and global

optimum values of these functions are given in Table 1. Schaffer and Sphere

functions usually test for search performance as basic optimization problems.

Since local optima numbers increase with dimensionality, the Griewant

function is strongly multimodal. The multimodality disappears for sufficiently

high dimensionalities (D>30) and the problem seems unimodal. The Rastrigin

function is based on the Sphere function with the addition of cosine

modulation to produce many local minima. Thus, the function is multimodal.

Minima locations are regularly distributed. The difficult part about finding

optimal solutions to this function is that an optimization algorithm can easily

become trapped in a local optimum on its way toward the global optimum.

The Rosenbrock function is well-known classic optimization problem. The

global optimum is inside a long, narrow, parabolic shaped flat valley. Due to

the difficulties in converging on the global optimum of this function, variables

are strongly dependent, and gradients generally do not point toward the

optimum. Schaffer, Sphere, Griewank, Rastrigin and Rosenbrock functions,

surface plot, and contour line are shown in Fig.4 to Fig.8.

Table1

Numerical benchmark functions

Function Formula
Rang

e
Minimum

Dimensio
n

Schaffer
22

2

2

1

2

2

2

1

2

1
))(001.01(

5.0)(sin
5.0)(

ii

ii

xx

xx
xf

++

−+
+= [-100,

100]
0)0(1 =f 2

Sphere
=

=
5

1

2

2)(
d

idxxf [-100,
100]

0)0(2 =f 5

Griewank
1)

100
cos()100(

4000

1
)(

50

1

50

1

2

3 +

 −
−

−=

== d

id

d

id
i

x
xxf

[-600,
600]

0)100(3 =f

50

Rastrigin
=

+−=
50

1

2

4)10)2cos(10()(
d

idid xxxf [-5.12
, 5.12]

0)0(4 =f 50

Rosenbroc
k

2
50

1

22

)1(5)1()(100)(−+−=
=

+ id

d

iddi xxxxf [-50,
50]

0)1(5 =f 50

Note: where i = 1 to n.

Table 2

Parameter values used in the experiments

DE EA PSO BA PBA

n 50 n 100 n 20 n 100 n 100
CF 0.8 Pc 1.0 w 1.0~0.7 e n/2 e n/2
f 0.5 Pm 0.3 v Xmin/10~Xmax/10 b n/4 b n/4
 M 0.01 r n/4 r n/4
 N 10 n1 2 w 1.0~0.7
 n2 1 v Xmin/10~Xmax/10
 Peitr 15
 Pbitr 9

n=population size (colony size); CF=crossover factor for DE; pc=crossover

rate for EA; pm=mutation rate; M=mutation variance; N=elite size; f=scaling

factor; w=inertia weight; v=limit of velocity for PSO; e=elite bee number;

b=best bee number; r=random bee number; n1= elite bee neighborhood

number; n2=best bee neighborhood number; Peitr=PSO iteration of elite bees;

Pbitr=PSO iteration of best bees.

Fig.4. Schaffer function

Fig.5. Sphere function

Fig.6. Griewank function

Fig.7. Rastrigin function

Fig.8. Rosenbrock function

6. RESULTS AND DISCUSSION

Each experiment ran for 30 runs, and average function values for the best

solutions were found and recorded. Mean and standard deviations of function

values obtained by DE (Krink, etc., 2004), EA (Krink, etc., 2004), PSO (Krink,

etc., 2004), BA (Pham, etc., 2006) and PBA under the same conditions are

given in Table 2. Values less than E-12 were reported as 0. For f1 and f2

functions, DE, EA BA and PBA found the optimum value within the given cycle

duration, while PSO could not. For f3 and f4 functions, while DE and PBA

showed equal performance, it found that optimum, EA, PSO and BA

demonstrated relatively worse performance. For the f5 function, PBA

produced the best results. As seen from results presented in Table 3, the PBA

produced the best performance amongst all algorithms considered in the

present investigation.

Table 3

The results obtained by DE, EA, PSO, BA and PBA

Functions
Methods

f1
Schaffer

f2
Sphere

f3
Griewank

f4
Rastrigin

f5
Rosenbrock

DE
Mean 0 0 0 0 35.32
Std 0 0 0 0 0.27

EA
Mean 0 0 6.24E-3 32.67 79.82
Std 0 0 1.38E-3 1.94 10.45

PSO
Mean 4.53E-3 2.5113E-8 1.55 13.12 5142.45
Std 9.00E-4 0 6.70E-2 1.45 2929.47

BA
Mean 0 0 88.27 0 48.65
Std 0 0 5.18 0 0.43

PBA
Mean 0 0 0 0 10.71
Std 0 0 0 0 1.70

In order to analyze its behavior, PBA was run using different population

(colony) sizes and Table 3 values. As shown in Table 4, best function value

means obtained using different colony sizes were 25, 50, 75 and 100 for all

functions presented. The progress of mean best values presented in Table 4

is shown in Figs. 9 to 13. From Table 4 and Figs. 9 to 13, it can be concluded

that, as population size increases, the algorithm produces better results.

However, once the colony size exceeds 75, any increment in fitness value will

not significantly improve PBA algorithm performance. For the test problems

carried out in this work, a colony size of 75 to 100 can provide an acceptable

convergence speed for the search.

Table 4

Mean of function values obtained by PBA under different colony sizes

Colony sizes

25 50 75 100

F
u

n
c
ti
o

n
s
 Schaffer 1.46E-3 0 0 0

Sphere 0 0 0 0

Griewank 2.04E-9 0 0 0

Rastrigin 6.64E-8 2.92E-11 0 0

Rosenbrock 86.75 44.04 20.31 10.71

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 200 400 600 800 1000

PBA(cololy=100) PBA(cololy=75) PBA(cololy=50) PBA(cololy=25)

Fig.9. Evolution of mean best values for Schaffer function on different colony

sizes

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 200 400 600 800 1000

PBA(cololy=100) PBA(cololy=75) PBA(cololy=50) PBA(cololy=25)

Fig.10. Evolution of mean best values for Sphere function on different colony

sizes

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

PBA(cololy=100) PBA(cololy=75) PBA(cololy=50) PBA(cololy=25)

Fig.11. Evolution of mean best values for Griewank function on different

colony sizes

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

PBA(cololy=100) PBA(cololy=75) PBA(cololy=50) PBA(cololy=25)

Fig.12. Evolution of mean best values for Rastrigin function on different colony

sizes

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

PBA(cololy=100) PBA(cololy=75) PBA(cololy=50) PBA(cololy=25)

Fig.13. Evolution of mean best values for Rosenbrock function on different

colony sizes

Results of colony sizes ranging from 75 to 100 can provide an acceptable

convergence speed for search. In order to analyze PBA behavior, this paper

has adapted 30 runs with different elite and best bee PSO iteration sizes (Peitr,

Pbitr). In Table 5, the mean of best function values with different elite and best

bees PSO iteration sizes vary as (15, 9), (30, 18) and (60, 36) for the presented

Rastrigin and Rosenbrock function. Progress of the mean best values

presented in Table 5 is illustrated in Figs. 14 to 17. From Table 5 and Figs. 14

to 17, it can be concluded that, during the period in which elite and best bee

PSO iterations increase until (30, 18), the algorithm produces better results.

However, after a sufficient value for iteration size exceeds (30, 18), the fitness

value does not improve, but rather worsens. For test problems carried out in

this work, elite and best bee PSO iteration sizes of (15, 9) to (30, 18) can

provide an acceptable convergence speed for search.

Table 5

 Mean of function values obtained by PBA under different PSO iteration sizes

PSO iteration sizes
(8, 5) (15, 9) (30, 18) (60, 36)

Colony size Functions

75
Rastrigin 1.18E-7 0 1.00 4.68

Rosenbrock 193.61 20.31 21.53 37.14

100
Rastrigin 3.90E-7 0 1.49 8.31

Rosenbrock 91.10 10.71 10.20 31.83

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(75, 8, 5) (75, 15, 9) (75, 30, 18) (75, 60, 36)

Fig.14. Mean best values for Rastrigin function on 75 colony size and different

PSO iteration sizes

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(100, 8, 5) (100, 15, 9) (100, 30, 18) (100, 60, 36)

Fig.15. Mean best values for Rastrigin function on 100 colony size and

different PSO iteration sizes

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(75, 8, 5) (75, 15, 9) (75, 30, 18) (75, 60, 36)

Fig.16. Mean best values for Rosenbrock function on 75 colony size and

different PSO iteration sizes

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(100, 8, 5) (100, 15, 9) (100, 30, 18) (100, 60, 36)

Fig.17. Mean best values for Rosenbrock function on 100 colony size and

different PSO iteration sizes

7. CONCLUSION

In the previous section, the performance of the particle bee algorithm (PBA)

was compared with differential evolution (DE), evolutionary algorithm (EA),

particle swarm optimization (PSO), and bee algorithm (BA) in terms of both

multi-dimensional and multimodal numeric problems. In terms of f1 and f2

functions, DE, EA BA and PBA identified the optimum value within the given

cycle duration, while PSO could not. For f3 and f4 functions, while DE and PBA

showed equal performance and found the optimum, EA, PSO and BA

demonstrated performance that was relatively poorer than DE and PBA. For

the f5 function, PBA produced the best results. Results show that PBA

performs better than the mentioned algorithms on each benchmark numerical

function. Behavior of PBA under different control parameter values was also

analyzed. Results show that the PBA suggests a colony size range of 75 to

100 and a PSO iteration size of (15, 9) to (30, 18) in order to provide an

acceptable convergence search speed.

References

1. Basturk B. and Karaboga D., “An Artificial Bee Colony (ABC)

Algorithm for Numeric Function Optimization,” IEEE Swarm Intelligence

Symposium 2006, Indianapolis, Indiana, USA (2006).

2. Bonabeau E., Dorigo M., and Theraulaz G., Swarm Intelligence: From

Natural to Artificial Intelligence, Oxford University Press, New York (1999).

3. Cheng M.Y. and Lien L.C., “A Hybrid AI-based Particle Bee

Algorithm (PBA) for Benchmark Functions and Facility Layout

Optimization,” Journal of Computing in Civil Engineering, Vol.26, No.5,

pp.612-624 (2012).

4. Dorigo, M., “Optimization, Learning and Natural Algorithms,” Ph.D.

Thesis, Politecnico di Milano, Italy (1992).

5. Eberhart, R., Shi Y., and Kennedy J., Swarm Intelligence. Morgan

Kaufmann, San Francisco (2001).

6. Holland J.H., Adaptation in Natural and Artificial Systems, University

of Michigan Press, Ann Arbor, MI (1975).

7. Karaboga D. and Akay B., “A comparative study of Artificial Bee

Colony algorithm,” Applied Mathematics and Computation, Vol.214,

pp.108-132 (2009).

8. Kennedy J. and Eberhart R.C., “Particle swarm optimization,” In

Proceedings of the 1995 IEEE International Conference on Neural Networks,

Vol.4, pp.1942-1948 (1995).

9. Korenaga T., Hatanaka T. and Uosaki K., “Improvement of Particle

Swarm Optimization for High-Dimensional Space,” 2006 SICE-ICASE

International Joint Conference (2006).

10. Krink T., Filipic B., Fogel G.B. and Thomsen R., “Noisy optimization

problems—a particular challenge for differential evolution?,” Proceedings of

2004 Congress on Evolutionary Computation, IEEE Press, Piscataway, NJ,

pp.332-339 (2004).

11. Li, X. L., “A new intelligent optimization-artificial fish swarm

algorithm,” Ph.D. Thesis, Zhejiang University of Zhejiang, China (2003).

12. Lien L.C. and Cheng M.Y., “A hybrid swarm intelligence based

particle-bee algorithm for construction site layout optimization,” Expert

Systems with Applications, Vol.39, No.10, pp.9642-9650 (2012).

13. Lien L.C. and Cheng M.Y., “Particle Bee Algorithm for Tower Cranes

Layout with Materials Quantity Supply and Demand

Optimization,” Automation in Construction, Vol.45, No.9, pp.25-32 (2014).

14. Ozbakir L., Baykasog A. and Tapkan P., “Bees algorithm for

generalized assignment problem,” Applied Mathematics and Computation,

Vol.215, pp. 3782-3795 (2010).

15. Parsopoulos, K. E., & Vrahatis, M. N., “Parameter selection and

adaptation in unified particle swarm optimization,” Mathematical and

Computer Modeling, Vol.46, No.1, pp.198-213 (2007).

16. Pham D.T., Koc E., Ghanbarzadeh A., Otri S., Rahim S. and Zaidi M.,

“The bees algorithm - a novel tool for complex optimization problems,” In

Proceedings of the Second International Virtual Conference on Intelligent

Production Machines and Systems, pp.454-461 (2006).

17. Price K.V., Storn R.M. and Lampinen J.A. (Eds.), Differential

Evolution: A Practical Approach to Global Optimization, Springer Natural

Computing Series (2005).

18. Tsai H. C., “Predicting strengths of concrete-type specimens using

hybrid multilayer perceptions with center-unified particle swarm optimization,”

Expert Systems with Applications, Vol.37, pp.1104-1112 (2010).

19. Yang X.S., “Engineering Optimizations via Nature-Inspired Virtual

Bee Algorithms,” Lecture Notes in Computer Science, Vol.3562, pp.317-323

(2005).

