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Abstract.  The paper considers the possibility of using the ant colony method to select the optimal parameters 
for simulation models. To specify a set of parameters, a parametric graph is used, consisting of layers (a separate 
parameter) and vertices in a layer (a specific parameter value). For this graph, the route will be the choice of one vertex 
in each layer, i.e. one value for each parameter. Calculation of the optimal route in such a graph is carried out using the 
ant colony method. The paper proposes to use the ant colony method not for the convergence of the method to a certain 
solution, but for directed enumeration of various solutions. In this case, after the first finding of the optimal solution, 
the algorithm continues the search, since the convergence of the algorithm to a local extreme is possible. To take into 
account the considered solutions, the use of a hash table is proposed. The paper proposes modifications of the algorithm 
aimed at solving the problem of convergence of the algorithm to one solution and accelerating (on average) the number 
of solutions considered until the optimal one is obtained. To test the algorithm, the SIRVD model was considered, where 
the parameters were the coefficients of the differential equations (a problem of low dimension) and the initial state (a 
problem of high dimension). Optimization was carried out until the parameters of the SIRVD model were obtained, 
which describe the real data from the Our World in Data aggregator with the least error. In this paper, we studied the 
influence of the parameters of the ant colony method on the efficiency of the method. 
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Introduction. 

Pandemics in modern history are not uncommon. In 2019, the global health system 

was tested by the SARS-Covid-19 pandemic. The modern public has reacted with the 

introduction of a mask regime, the introduction of lock-down, the abrupt opening of 

quarantine zones and departments of medical centers. Considering the increased cargo 

and passenger traffic, restrictions bring great difficulties. For medical centers, it is 

expected that it will be possible to quickly (up to two weeks) create quarantine zones and 

open additional quarantine departments. These activities involve hiring new staff, 

purchasing supplies, training and organizing staff and residents (or patients). With this 

approach, situational management is often used, when the decision to open additional 

branches is given when the existing ones are filled. 

To simplify management decision-making, it is necessary to predict the situation. 

Existing forecasting systems are usually based on statistical information and use machine 

learning methods. These systems require a sufficiently large training sample (i.e., the 

accuracy depends on the time of collection of statistical information and its accuracy). 

To describe the process of changing the number of healthy, sick, recovered 

people, there are systems of differential equations, for example, SIR, SEIR, SIRVD, etc. 
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Where the number of people belonging to the categories is considered: Susceptible, 

Exposed, Infected, Recovered, Vaccinated, Dead. To tune the system, it is necessary to 

calculate the weight coefficients of the system of differential equations. 

Simulation and analytical models can more accurately describe some of the 

processes taking place during a pandemic. These models are not based on statistical 

data, but on the description of the process of changing the state of the system over time. 

In such models, it is possible to take into account the methods of infection transmission, 

quarantine rules, various levels of quarantine and methods of testing the population, 

vaccination processes, transport, logistics processes, and others. The main problem of 

these systems is the need to check the adequacy of the model. Due to the large number 

of stochastic factors, a large number of accurate models are inadequate. For simulation 

and analytical models, the parameters can be varied and be both quantitative and 

qualitative. Calculation of model parameters, allowing building an adequate model, is a 

labor-intensive task. The use of expert assessments also requires a thorough check of the 

processes in the simulation model. But the availability of statistical data allows not only 

assessing the adequacy of the processes of the functioning of the model, but also the 

parameters of this model. 

At present, it has become possible to transfer many optimization, computational 

tasks from humans to computers. The user of such a system describes sets of 

parameters, and the computing system selects the optimal parameters by enumerating 

them. Most often, enumeration of parameters is carried out by brute force methods, since 

the computer system solves not an optimization problem, but a calculation one. 

The paper proposes to develop software that could rearrange parameter sets so 

that rational sets are calculated earlier than if they were considered sequentially. The 

input data of such a system are sets of parameters and, in the process of operation, the 

values of criteria for a particular set of parameters. Recent results such as [1-4] 

demonstrate that the problem of optimizing hyperparameters in large and multilayer 

models is a direct obstacle to scientific progress. There are similar systems, for example, 

the Bayesian optimizer (IBM Bayesian Optimization Accelerator (BOA)). In world practice, 

studies of the Bayesian optimizer are widespread [5-13]. IBM has taken an artificial 

intelligence approach based on Bayesian optimization, which builds and optimizes the 

model in real time to predict the most "promising" points that are calculated by existing 

tools. However, BOA-based solutions are expensive, require a separate computing 

cluster, and use metaheuristics to generate multiple hypotheses. These metaheuristics 

are commercially closed and are not subject to analysis. These features often become 

disadvantages of the Bayesian optimizer. 

The paper considers the application of the developed modification of the ant 

colony method for directed enumeration of hyperparameters. The algorithm of the ant 

colony method, developed for finding the traveling salesman path [14-16], can be easily 

modified for parametric problems [15-21]. In the presented works, the task of the ant 

colony method is to find rational solutions, while the majority of ants (agents) must move 
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along the same path. At the same time, modifications that allow ants to find new, non-

repeating solutions at each iteration were not considered by the scientific community. 

This approach is necessary when the task.  

Methods and techniques 

The operation of the ant colony method requires a graph structure, along the arcs of 

which agents (ants) move. For parametric optimization, the graph familiar to the traveling 

salesman problem is, in fact, a set of linked lists [21-29]. Each list defines a set of 

parameter values and may be referred to as a layer. The algorithm selects one vertex in 

each layer (i.e. for each parameter), i.e. parameter value. To take into account the already 

considered vertices, it is supposed to enter the paths of agents in the Hash table. In 

general terms, the modified ant colony method for directed enumeration of 

hyperparameters is shown in Figure 1. The block "Calculation of criteria values for a 

certain set of parameters" is supposed to be performed based on the operation of a 

simulation or analytical model that takes a vector of parameter values as input, and, as 

output variables, gives the value of the optimality criteria for the set of parameters. This 

approach allows testing the operation of the modified ant colony method independently 

of a complex analytical or simulation model, for example, on a simple simulation model. 
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Fig 1. Algorithm of the modified ant colony method. 

 

The paper also proposes the use of two new modifications of the algorithm. The 

task of the original ant colony method is the convergence of all solutions to one, which 

interferes with the directed enumeration of hyperparameters. In addition, the absence of 

an alternative to the path length (for the traveling salesman problem), which allowed the 

initial weight (pheromone) to be entered on arcs with short lengths, negatively affects the 

performance of the algorithm. The algorithm without additional information converges to 

the solution that turned out to be the best at the first iterations. 

As part of the modification of the algorithm, it is proposed for agents that have not 

found a new way in the graph to enter weights on the graph equal to 0, i.e. do not carry 
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weight. Thus, you can try to reduce the impact of the fact that the algorithm tends to 

move all agents along the same route. The second modification is the need to roll back 

the state of the parametric graph to the initial state, if all agents have not found a single 

new solution at the iteration. Agents that have not found a new solution will be called 

"null" agents, and the iteration at which all agents are zero - "zero" iteration. The 

application of the proposed modifications is marked in black on the graphs. The algorithm 

without applying these modifications is gray lines. 

To reduce the influence of weights and take into account the vertices visited by 

fewer agents, it is proposed to use the number of agents who visited the vertex during the 

entire time of algorithm (1) in the probabilistic formula for choosing the next transition. 

    (1) 

Where,
, ( )ij kP t  – is the probability of choosing the j-th vertex from the i-th vertex by 

the k-th agent; 
, ( )norm j t – is the normalized number of weights (pheromone) at vertex j; 

( ) jkol t  – is the number of visits to node j by agents. k1, k2, k3 and k4 are coefficients. 

The denominator in the formula is responsible for normalizing all values of the sums in 

such a way that the sum of all probabilities equals 1. All coefficients were taken equal to 1 

during testing. The coefficient k2 varied. For a value equal to 0, the graphs were marked 

with a solid line, and for a value of 1, a dotted line. 

Since the ant colony method is based on a probabilistic search for a vertex for the 

transition, it is necessary to conduct a lot of experiments and collect statistical 

information to analyze the operation of the algorithm. To study the possibility of applying 

the modification of the ant colony method for directed enumeration of hyperparameters, 

the following are estimated: the mathematical expectation of the solution number (serial 

number of the set of values) at which the optimal set of parameters was found, the 

mathematical expectation of the number of considered solutions, the frequency of finding 

the optimal solution for 10,000 iterations. For all estimates, confidence intervals are given 

at a significance level of 99%, if the interval itself on the graph does not merge with the 

calculated estimate of the mathematical expectation. The solutions and algorithms 

proposed in the work are implemented in the Python language as part of the MMK-

Cluster software. 

An analysis of the performance of the modified ant colony method is proposed to 

be carried out using the SIRVD model as an analytical model.  
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Experiment 

For this model, based on historical data, it was necessary to calculate the 

coefficients β, σ, α, γ, δ. A parametric graph for finding the optimal set of coefficients is 

shown in Figure 2. It should be noted that at the moment the ant colony method only 

works with a discrete set of values, but there are studies and implementations for 

continuous optimization. For discretization, it is necessary to set a step, which determines 

the accuracy of the model and the size of the parametric graph. The parametric graph 

shown in Figure 2 contains 2.5 million solutions. 

 

 

Fig. 2. An example of the parametric graph under study 

 

The data for calculating parameter estimates were taken from the Our World in 

Data aggregator [30-31]. To determine the values of Infected (I), the total_cases 

parameter was used, for the number of Vaccinated (V) - total_vactination, for Mortality (D) 

- total_deths. Recovered and Susceptible values were determined based on the total 

population. It should be noted that the SIRVD model is not entirely accurate as only 

Susceptibles can become Infected. There are no transitions from Recovered (re-infected) 

and Vaccinated. Therefore, the data taken from the Our World in Data aggregator should 
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not be well described by the SIRVD model. The algorithm for determining the value of the 

criterion was as follows: 

1. For some initial state t, taking into account the parameters of differential 

equations obtained as a result of the ant colony method, the values were 

calculated 𝑆(𝑡 + 1), 𝐼(𝑡 + 1), 𝑅(𝑡 + 1), 𝑉(𝑡 + 1), 𝐷(𝑡 + 1) 

2. There is a comparison of the main indicators (the module of the number of 

infected, vaccinated and dead) calculated as a result of the algorithm with 

real indicators taken from the Our World in Data aggregator. Between 

iterations, the error accumulates. 

3. Time increases by one step and becomes equal to t+1. The obtained values 

determine the initial state, and the transition to the 1st step is carried out 

until the data runs out. 

Since it is clear from the work [32-33] that the estimates of the sought coefficients 

are not stationary, a small period of time with 10 measurements was subjected to the 

study. The initial state for the first experiment was statistical information from the 

aggregator on the first day of the study. The second experiment was carried out with the 

expansion of the decision graph and the addition of columns with the initial state of the 

system, i.e. Based on the available statistical data, the algorithm performed a 

retrospective analysis of the initial state. At the same time, for the second variant, the 

number of possible solutions sharply increases. 

Results 

The results of 100 runs of the algorithm of the modified ant colony method showed 

the possibility of using this method for directed enumeration of hyperparameters, in 

particular, to search for the coefficients of the SIRVD model. All modifications of the 

algorithm found the optimal set of coefficients of differential equations, considering less 

than 0.12% of possible solutions. 

The convergence of the algorithm was studied by varying the “standard” 

parameters of the ant colony method: the number of agents per iteration (N), the 

evaporation coefficient (Ro) and the weight parameter (pheromone, Q). The most 

significant is the variation in the number of agents per iteration, since the number of 

considered solutions also depends on it. 

The standard ant colony method, modified only to work with a parametric graph, 

loops on the best solutions found in the initial iterations. As a result, with the number of 

agents per iteration equal to 5, the optimal solution was found only in 25% of algorithm 

runs. For a graph of higher dimension (taking into account the definition of the initial 

state), this percentage drops to 10. The percentage of finding the optimal set of 

parameters by the standard algorithm approaches 100% only with 20 (35 for a graph of 

high dimension) agents at one iteration. This is due to the fact that a large number in the 

initial iterations allows us to consider more solutions at first. The use of the proposed 

modifications, both with zero agents and iterations, and k2=1, makes it possible to find 

optimal solutions in 100% runs even with the number of agents per iteration equal to 5. 
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The graphs (Fig. 3) show the results of collecting statistical information on the 

evaluation of the mathematical expectation of the solution number (data set number) 

based on the results of 100 runs. The thin dotted lines indicate the boundaries of the 

confidence intervals at a confidence level of 0.99. The upper graph corresponds to a 

small parametric graph, consisting of only one value of the coefficients of differential 

equations, and the lower graph corresponds to a large parametric graph.  

 

 

 

Fig. 3. Dependence of the estimate of the mathematical expectation of the number of the 

solution, on which the optimal set of parameters is found, on the number of agents per 

iteration. 
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It can be seen from the graphs that the low percentage of successful searches for 

solutions using the standard ant colony method (gray solid line) with the number of 

agents less than 20 is due to the fact that the optimal set of parameters must be found at 

the “first” iterations (the graph starts from the lowest values), otherwise the algorithm will 

go in cycles on the found non-optimal solution. Adding k2=1 (black solid graph) leads to 

finding the optimal set of parameters for any number of agents per iteration, but the 

solution itself was found after reviewing more than 0.2% (compared to 0.12%) of the 

solutions. With an increase in the number of agents per iteration, all algorithms converge 

to finding the optimal set of parameters when considering the same number of solutions 

(up to 3000 for a low-dimensional graph (2500000 options in total) and 5000 for a large 

one (56000000000 all options)). Algorithms taking into account zero agents and iterations 

for any number of agents find solutions as in the steady state. This property allows using 

a smaller number of agents per iteration, and thus reducing the running time of the 

algorithm. 

Figure 4 shows the dependence of the estimate of the frequency of finding a new solution 

by an agent for various algorithms. This parameter shows how many solutions were 

considered by the algorithm for the allotted number of iterations. Finding by the agent a 

solution that is already in the Hash table does not lead to new results, and, therefore, this 

agent can be considered "fictitious".  
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Fig. 4. Dependence of the estimate of the frequency of finding a new solution when 

searching for a path by an agent on the number of agents per iteration. 

 

From the graphs in Figure 4, it can be seen that the standard method finds 

solutions that have already been considered. The probability of finding a new solution by 

the standard algorithm does not exceed 5% on a low-dimensional graph and tends to 

40% on a high-dimensional graph. Adding actions for the case when a new solution is not 

found: special behavior conditions for zero agents and zero iterations (dotted lines), 

slightly correct the situation, but with an increase in the number of agents per iteration, 

they converge to the corresponding values. The best effect is achieved by setting the 

coefficient k2=1 (black lines). For a high-dimensional graph, the number of found unique 

solutions tends to 100%. 

It should also be noted that the number of zero iterations, i.e. iterations in which no 

agent from the group found a new solution is very different for algorithms. So for a 

standard algorithm, on average, on a low-dimensional graph, 85% of iterations are zero, a 

little better for a high-dimensional graph (reaches 50%), when, as when taking into 

account zero agents and iterations, this indicator drops to 20% and 0.1%, respectively, 

and when applying k2=1 is equal to 0. 

The Q parameter (the base value of the number of added weights) does not 

significantly affect the performance of the algorithm, since the relative rather than the 

absolute value of the weights is important for the probabilistic choice. For the evaporation 

parameter, the situation is similar to the studies obtained in other papers. It is 

recommended to set the evaporation parameter so that most of the weights in the 

parametric graph are based on the weights decreasing by a small factor. 

Conclusion 

The paper considers the possibility of using the ant colony method for directed 

enumeration of hyperparameters to solve the problem of optimizing model parameters. 

This study was carried out to consider an optimization algorithm in order to apply it to 

optimize the parameters of pandemic development models. In addition to considering the 

possibility of application, modifications of the algorithm are proposed that allow solving 

the problem of directed enumeration of hyperparameters. 

To test the effectiveness of the algorithm, the problem of determining the 

coefficients of differential equations for the SIRVD model is considered. In addition to 

considering the coefficients of differential equations, the problem of determining the initial 

state was also considered. The assessment of the quality of the obtained models was 

determined on the basis of historical information obtained from the Our World in Data 

aggregator. 

According to the results of the algorithm, the optimal set of parameters was found 

when considering less than 0.08% of the considered solutions, which makes it possible 

to guarantee the reduction of the required data set for directed enumeration of options. 

To take into account the considered sets of parameters, these sets are stored in a hash 
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table. The paper proposes an algorithm for the ant colony method using a hash table. 

Suggested modifications of the algorithm:  

• for agents that have not found a new solution (the solution is in the hash table), 

enter the weight on the graph in the amount of 0 (zero agents); 

• if at the iteration no agent has found a new solution, then the parametric graph 

is transferred to the initial state (zero iteration) 

• the ability to take into account how many agents have visited the vertex, and to 

give preference to those vertices visited by a smaller number of agents (taking 

into account standard weights (pheromone)) 

Based on the results of testing the algorithm, it is shown that the proposed 

modifications of the algorithm make it possible to carry out a directed enumeration of 

hyperparameters, while practically not finding identical solutions. When applying 

modifications, the number of the solution is stabilized, at which the optimal set of model 

parameters is found, with different parameters of the ant colony algorithm. 

This algorithm with modifications is supposed to select parameters in order to find 

a set that ensures the maximum adequacy of the developed simulation model to real 

data. As a simulation model, it is planned to use the pandemic counteraction simulation 

model being developed, which takes into account not only the processes of infection and 

recovery of patients, but also contacts between people, the work of medical personnel, 

logistical and material support, staff training processes and social reactions of the 

population. 

Despite the operation of the algorithm, there are difficulties during implementation: 

• construction of a parametric graph at the moment is possible only when the space 

is discretized. But, since there are studies of the ant colony method, which works 

in a continuous space of variables, further improvement of the algorithm is 

expected. 

• the algorithm has the curse of dimension and, in the case of a large number of 

vertices in a layer, does not optimize the problem well. 

• at the moment, single-criteria optimization is considered, for which there are many 

alternatives, including those using machine learning. In the future, it is supposed to 

solve the problem of multiobjective optimization. 
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