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Abstract. In this paper, small oscillations of needles on an elastic base are considered, taking into account 
dissipation in the case of a suddenly applied force, an equation of motion and its solution are proposed, the dyna-
mism coefficient and its maxima are determined. 
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1. Introduction.  

The aim of this work is to study the vibrations of needles embedded in an elastic 

base. To determine the dynamic coefficients in the first approximation, we represent 

the needle in the form of an elastic non-inertial beam, rigidly fixed at one end, carrying 

a concentrated mass at the point of application of the shock load. 

2. Materials and methods 

The equation of small oscillations of such a system, taking into account the dis-

sipation in the case of a suddenно applied force, will be as follows [1]: 
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or 
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where m is the mass of the needle brought to the point of impact; 

k is the damping coefficient associated with the stiffness coefficient by the rela-

tion: 
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Absorption coefficient   we assume approximately 0.62. 

The solution of equation (1) has the form: 
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The first two equations describe damped natural oscillations. Differentiate (4): 
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To define arbitrary constants, we have the initial conditions for t=0 y=0, 0=y , 

whence 
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Then (5) is written as: 
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It is easy to see that
2mp

Pr -represents a static movement of mass, hence 
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Its successive maxima are determined at the following time points ..3,2,1, == i
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Taking into account the introduced notation and dependence (3), the maximum 

values of the dynamic coefficient are calculated using the formula: 
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Since the time spent by the needles in the impact zone rT =(12 ... 60) s is large 

compared to the period of natural vibrations, the termination of this force does not dif-

fer from the removal of static load during static deflection of the needle. Therefore, dy-

namic phenomena are not of interest at this point. 

Let us now proceed to the determination of the dynamic coefficient from the im-

pact on the needleу . 

The force pulse from their impact on the needle: 
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where f(t) is the pulse shape, 

       0T -time of impact. 



We assume  f(t)=1-a rectangular pulse, so 
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static deflection of the needle under the action of force yP : 
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Substituting (10) and (11) in the expression for dynamic deflection, we obtain: 
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The homogeneous differential equation of vibrations is represented in the form: 

 
02 2 =++ ypyny   (14) 

Its solution, which looks like: 
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it is a free oscillation with attenuation. Expression (15) under the action on the 

needle of a certain mass mbmoving with a linear velocity V, that is, the force pulse 

S=mbv, must satisfy the initial conditions for t=0 y=0, 0Symb =  . Given them, we find ar-

bitrary constants: 
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Now (15) takes the form: 
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where does the dynamic coefficient come from? 
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As before, to find its maximum, we equate the first derivative (17) to zero 
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This equality is possible when 
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3. Results and Discussion 

Let's set aside a vector of value p from the origin pby the angle pt          from the 

abscissa axis in a counterclockwise direction, then a vector of value  n  it will be posi-

tioned at a right angle in the clockwise direction from the first one. The resulting vector 

is a projection on the x-axis of the vector modulo = 22 np +  and composing the angle 

with the a-b-sciss axis
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sented in the equivalent form 
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Its solution 
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There are two roots in the first period 
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Substitute them in the expression 

 

nt

d
dy

eKK −= ( ) ptnpnppt cos2sin 22 −−−
 

(21) 

                    Since p>n, it should be noted that 0dyK when 1t . 
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   the dynamic coefficient has maxima . 

Transforming (21), we arrive at the formula for the sequence of maxima of the 

dynamic coefficient when hitting the needle: 
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In the case of consecutive (K+1) impacts that occur in the case under considera-

tion , the dynamic coefficient can be        can be obtained by superposing functions 



(5.39) with different reference points j. If 
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The highest of the highs will be in the lastpeepod. Its value is greaterthe closer 

the ratio of the shock period to the period of natural vibrations 
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y is to 1. 
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