Evgrafov V. A. Prospects for improving spray nozzlesfuel supply equipment for diesels

Перспективы совершенствования распылителей форсунок топливоподающей аппаратуры дизелей

Evgrafov V. A.,

doctor of technical Sciences, Professor, Department of Technical operation of technological machines and equipment of nature management, Russian state agrarian University – Timiryazev Moscow agricultural Academy.

Евграфов В.А..

д.т.н., профессор кафедра «Техническая эксплуатация технологических машин и оборудования природообустройства» Российский государственный аграрный университет –

МСХА им. К.А. Тимирязева.

Abstract. The article presents the results of testing of modernized injectors for working on rapeseed oil, in relation to diesel fuel. Methods of experiments using alternative fuels.

Keywords: rapeseed fuel; equipment; nozzle; pressure.

Аннотация. В статье даны результаты испытания модернизированных форсунок для работы на рапсовом масле, в соотношений с дизельным топливом. Методика экспериментов с использованием альтернативных топлив.

Ключевые слова: рапсовое топливо; аппаратура; форсунка; давление.

Рецензент: Сагитов Рамиль Фаргатович, кандидат технических наук, доцент, заместитель директора по научной работе в ООО «Научно-исследовательский и проектный институт экологических проблем», г. Оренбург

Достижение требуемых показателей топливной экономичности и токсичности отработавших газов транспортного дизеля, работающего на дизельном топливе и вязких смесевых биотопливах, привели к необходимости совершенствования конструкции распылителей форсунок. Проведённые расчеты по исследованию влияния геометрии проточной части распылителей форсунок на показатели потока топлива в распылителе и параметры процесса распыливания топлива, обуславливают совершенствование методики определения показателей потока топлива в проточной части распылителей форсунок, обеспечивающих улучшение качества процессов распыливания топлива и смесеобразования. снижение расхода топлива, снижение уровня шума и эмиссии вредных веществ, выводимых с отработанными газами. Исследования опытных образцов игл распылителей совместимых со штатной форсункой рисунок 1.: а - игла серийного распылителя типа 145 (НЗТА); б - опытная игла по варианту № 1; в - опытная игла по варианту № 2; г – опытная игла по варианту № 3.

Сравнение изменения поля кинетической энергии турбулентности для форсунки с большим диаметром выходных отверстий (d = 0.72мм) при использовании иглы опытного распылителя № 3 в сравнении с серийной на биотопливе рисунок 2.

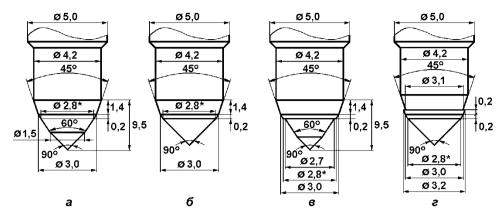


Рисунок 1. Серийный и опытные образцы игл распылителей совместимых со штатной форсункой.

В таблице 1 показаны средние по площади скорости истечения топлива, значения энергий турбулентных вихрей и интеграл энергии вихрей по массовому расходу в выходном сечении отверстия, в сравнении серийной распылителя и опытного № 3 распылителя.

Таблица 1 Средние значения

Параметр	Серийный	Опытный	Разница
		Nº3	
Средняя по площади скорость истечения топлива [м/с]	117,18	111,98	+4.44%
Среднее по площади значение энергии турбулентных вихрей [Дж/кг]	160.19	330,36	+106,23%
Интеграл энергии вихрей по массовому расходу в выходном сечении отверстия [Вт]	40,11	58,76	+46,50%

Полученные результаты расчета модели на распыл и дальнобойности топливного факела наглядно показывают, что скорость топлива в процессе впрыска так и дальнобойность топливного факела дизеля и биодизеля практический не имеют каких-либо значительных расхождений.

Для оценки применяемости расчетных моделей были проведены расчетные исследования развития топливной струи по методике А.С. Лышевского и по методике В.И. Трусова и Л.М. Рябикина (МАДИ), Дальнобойность топливной струи по критериальной зависимости А.С. Лышевского имеет вид:

$$L = A \cdot d_p \cdot We^a \cdot Lp^b \cdot E^n/\rho^n,$$
(1)

где We, Lp, E - критерии Вебера, Лапласа и Эйлера соответственно.

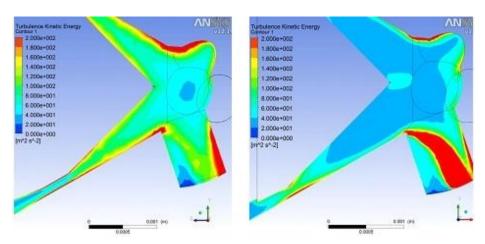


Рисунок 2. Кинетическая энергия турбулентных вихрей в плоскости, проходящей через центр первого отверстия.

а-серийный распылитель (d = 0.72 мм), σ -опытный распылитель (d = 0.72 мм)

Коэффициенты уравнения (1) выбираются в зависимости от относительной плотности воздуха ρ , определяемой в виде: $\rho = \rho_B/\rho_T$. (2)

Для начального участка струи при 0,0014< ρ <0,0095:

$$A = 0.242$$
; $a = 0.52$; $b = -0.08$; $m = 0.35$; $n = 0.225$.

для основного участка струи при $0,0014 < \rho < 0,0095$:

$$A = 1,871$$
; $a = 0,355$; $b = -0,08$; $m = 0,25$, $n = 0,225$;

для начального участка струи при $0,0095 < \rho < 0,028$:

$$A = 0,067$$
; $a = 0,52$; $b = -0,08$; $m = 0,35$; $n = 0,5$.

для основного участка струи при $0.0095 < \rho < 0.028$:

$$A = 0.51$$
; $a = 0.355$; $b = -0.08$; $m = 0.25$; $n = 0.5$.

Дальнобойность топливной струи по порционной аэродинамической модели, предложенной в МАДИ, определяется максимальной дальнобойностью порции,

которая имеет вид:

$$L_i=In [(H \cdot C_{oi} \cdot (t-1)+1)]/H$$

(3)

где C_{oi} - начальная скорость истечения і-ой порции; H - коэффициент, равный $H = c_x \ \rho \ / (2 \cdot \xi \cdot d_p^2);$ $c_x = 0,4$ - коэффициент лобового сопротивления і-ой порции капельно-воздушной смеси; $\xi = l_i / f_i = 1,95 \ [1/мм]$ - опытный коэффициент, учитывающий длину l_i и площадь поперечного сечения f_i і-ой порции.

При расчете подачи дизельного топлива исходными данными являлись его следующие физические свойства: плотность ρ_{7} =848 кг/м³, вязкость ν_{7} =5 мм²/с, поверхностное натяжение σ_{T} = 28 мН/м. Топливо подавалось под давлением р_{впр}=26 МПа в воздушную среду с противодавлениями р_{пр} = 100 и 1100 кПа, через распылитель с цилиндрическими распыливающими отверстиями диаметром d_p = 0,23 и 0,54 мм. Результаты расчетов показывали заметное расхождение данных по развитию топливной струи, особенно при впрыскивании в воздух при нормальном давлении и в период времени t > 2-3 с. Возможными причинами

несовпадения результатов расчета - движение порций топлива на всем участке развития струи принималось независимым друг от друга, что не позволяет учитывать эффект энергетической подпитки фронта струи; - подбор коэффициентов осуществлялся при переменном законе подачи, имеющем, как правило, куполообразный вид, а не прямоугольный, как при сравнении.

Таким образом, возникает необходимость создания модели развития топливной струи, учитывающей действительный закон подачи топлива, обеспечивающей адекватное описание дальнобойности топливной струи с учетом физических явлений, происходящих в струе, и имеющей перспективы дальнейшего развития по мере накопления экспериментального материала по влияющим факторам.

Методика испытаний форсунок на распыливание топлива заключалось в следующем: 1. Делается поверка всего используемого оборудования.

- 2. Подготавливаются навески топлива то есть дизельное топливо по ГОСТ 305-82 и смесь рапсового масла и дизельного топлива в соотношении 30% РМ и 70% ДТ.
- 3. При постоянном давлении впрыска делается съемка топливного факела камерой.

Краткое описание математической модели расчетного комплекса Расчетное текущее значение коэффициента избытка воздуха

$$\alpha_z = \alpha_{zH} + \frac{1 - \alpha_{zH}}{\phi_z} \phi \tag{4}$$

Температура продуктов в зоне сгорания

$$T_{nc} = \frac{\sqrt{B - 4A\{\frac{1 - r_{nc}}{r_{nc}}[H_{cM}(T_{cM}) - H_{cM}(T_{cp})] - AT_{cp}^2 - BT_{cp}\}} - B}}{2 \cdot A}$$
(5)

где А и В - коэффициенты уравнения для энтальпии продуктов сгорания вида:

$$H_{nc}(T_{nc}) = A \cdot T_{nc}^2 + B \cdot T_{nc} + C$$
 кДж/кМоль (6)

Расчет образования оксидов азота происходит по цепному механизму Я.Б.

Зельдовича:
$$O2 \leftrightarrow 2O$$
, $N2 + O \leftrightarrow NO + N$, $N + O2 \leftrightarrow NO + O$. (7)

Объемная доля оксида азота в продуктах сгорания rNO

$$\frac{dr_{NO}}{d\phi} = \frac{P \cdot 2,333 \cdot 10^7 \cdot e^{-\frac{38020}{T_{nc}}} \cdot r_{N2eq} \cdot r_{Oeq} \cdot [1 - (\frac{r_{NO}}{r_{NOeq}})^2]}{RT_{nc} (1 + \frac{2346}{T_{nc}} e^{\frac{3365}{T_{nc}}} \cdot \frac{r_{NO}}{r_{O2eq}})} \frac{1}{\omega}$$
(8)

Таблица 2 Исходные данные для используемого топлива используемые в расчетном комплексе

	Топлива						
Физико-химические свойства	ДТ	МЭР	95% ДТ + 5 %	70%ДТ + 30 %	60%ДТ + 40 %	40 %ДТ + 60 %	20 %ДТ + 80 %
		М	МЭРМ	PM	МЭРМ	МЭРМ	МЭРМ
Плотность при 50 оС, кг/м ³	809	855	810	818	826	836	845
Вязкость кинематическая при 50°C,мм²/с	2,45	4,63	2,42	2,74	3,07	3,51	4,11
Коэффициент поверхностного	25,3	29,0	25,4	26,0	26,7	27,4	28,1
натяжения при 50° C, мН/м							
Теплота сгорания низшая, МДж/кг	42,5	37,8	42,2	41,9	41,5	40,5	39,6
Цетановое число	46,5	54	47	49	50	51,5	53
Температура самовоспламение °C	250	230	-	-	-	-	-
Количество воздуха, необходимое для	14,3	12,6	14,2	14,0	13,6	13,3	12,9
сгорания вещества, кг							
Содержание, % по массе: С	87,0	77,6	86,5	85,1	83,2	81,4	79,5
Н	12,6	12,2	12,6	12,5	12,4	12,3	12,2
0	0,4	10,2	0,9	2,4	4,4	6,3	8,24
Общее содержание серы, % по массе	0,20	0,002	0,19	0,16	0,12	0,08	0,02

Выводы.

Наилучшее качество распыливания топлива обеспечил опытный распылитель по варианту № 3, в котором произведена подрезка части хвостовика иглы серийного распылителя, расположенной ниже посадочного диаметра d = 2.8 мм, под углом конуса 90° , а конусная часть хвостовика иглы с углом конуса 45° , расположенная выше диаметра d = 3.2 мм, сточена на 0.1 мм (по диаметру) с таким же углом конуса (45°) . В результате на хвостовике иглы образуется горизонтальный кольцевой уступ с наружным и внутренним диаметрами 3.2 и 3.1 мм.

Conclusions.

Best quality atomization of fuel provided experienced expose-tel's option # 3, in which the cutting part of the shank of the needle serial atomizer located below the landing dn diameter = 2.8 mm, angle of cone 90, and the tapered part of the shank of the needle with a cone angle of 45°, located above a diameter d = 3.2 mm, ground down to 0.1 mm (diameter) with the same cone angle (45°). As a result, a horizontal ring ledge is formed on the needle shank with an outer and inner diameter of 3.2 and 3.1 mm.

References

- 1. Александров А.А., Архаров И.А., Марков В.А. и др. Альтернативные топлива для двигателей внутреннего сгорания / Под ред. А.А. Александрова, В.А. Маркова. М.: ООО НИЦ «Инженер», ООО «Онико-М», 2012. 791 с.
- 2. Гусаков С.В. Перспективы применения в дизелях альтернативных топлив из возобновляемых источников. М.: РУДН, 2008. 318 с.

- 3. Иващенко Н.А., Вагнер В.А., Грехов Л.В. Моделирование процессов топливоподачи и проектирование топливной аппаратуры дизелей. Барнаул М.: Изд-во АлтГТУ им. И.И. Ползунова, 2002. 166 с.
- 4. . Тойгамбаев С.К. Испытания двигателей на специальных стендах. ж. Актуальные проблемы современной науки № 5, (84) 2015. г. Москва. с. 163-167.
- 4. Шнырёв А.П., Тойгамбаев С.К. Основы надёжности транспортных и технологических машин. Учебное пособие для студ. технич. ВУЗов УМО МГУП. Издательская. «Компания Спутник +» 2006, г. Москва. с.102.
- 5. Тойгамбаев С.К. Применение термодиффузионных процессов для упрочнения и восстановления деталей сельскохозяйственной техники. Монография, Рекомендован УМО ВУЗов МГУП. Редакционно-издательский. Отд. МГУП, 2011. г. Москва. с. 156.
- 6. Тойгамбаев С.К. Повышение долговечности деталей сельскохозяйственных и мелиоративных машин при применении термоциклической диффузионной металлизации. Автореферат на соискание звания кандидата технических наук. РГАУ-МСХА им. К.А. Тимирязева. Москва. 2000г.
- 7. Тойгамбаев С.К. Стенд для обкатки и испытания двигателей. ж. Актуальные проблемы современной науки № 5(78) 2014. г. Москва.с.146-149
- 8. Тойгамбаев С.К., Шнырёв А.П., Мынжасаров Р.И. Надежность технологических машин. М.: МГУП, 2008. 202 с.
- 9. Казимирчук А.Ф., Шнырёв А.П., Тойгамбаев С.К. Флотационная очистка электролитов и СОЖ после механической обработки деталей машин. Актуальные проблемы современной науки № 4(43), 2008, г. Москва с.216-218.
 - 10. Тойгамбаев С.К. Совершенствование моечной машины ОМ 21614.
 - ж. Техника и технологии № 3 (56), 2013.г. Москва. с. 15-18.
- 11. Коршунов Д.А. Улучшение эксплуатационных показателей транспортного дизеля путем использования биотоплив на основе рапсового масла: Автореферат дисс. ... канд. техн. наук: 05.04.02. М.: МГТУ им. Н.Э. Баумана, 2008. 16 с.
- 12. Крутов В.И., Горбаневский В.Е., Кислов В.Г. Топливная аппаратура автотракторных двигателей. М.: Машиностроение, 1985. 208 с.
- 13. Слепцов О.Н. Эффективность применения топлив растительного происхождения в АПК: Автореферат дисс. ... канд. техн. наук: 05.20.01. М.: ФГОУ ВПО «МГАУ им. В.П. Горячкина», 2007. 17 с.